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Abstract. The critical behaviour of correlation functions near a boundary is modified from
that in the bulk. When the boundary is smooth this is known to be characterized by the
surface scaling dimensioñx. We consider the case when the boundary is a random fractal,
specifically a self-avoiding walk or the frontier of a Brownian walk, in two dimensions, and
show that the boundary scaling behaviour of the correlation function is characterized by a set
of multifractal boundary exponents, given exactly by conformal invariance arguments to be
λn = 1

48(
√

1 + 24nx̃ + 11)(
√

1 + 24nx̃ − 1). This result may be interpreted in terms of a scale-
dependent distribution of opening anglesα of the fractal boundary: on short distance scales these
are sharply peaked aroundα = π/3. Similar arguments give the multifractal exponents for the
case of coupling to a quenched random bulk geometry.

The subject of boundary critical behaviour [1] is now well understood, particularly in two
dimensions [2]. The two-point correlation function〈φ(r)φ(R)〉 of a scaling operatorφ, which
behaves in the bulk at large distances at the critical point as|r − R|−2x , wherex is the bulk
scaling dimension ofφ, is modified when one of the points (sayr) is close to the boundary to
the form

〈φ(r)φ(R)〉 ∼ |r|−x |R|−x |R/r|−x̃ (1)

wherex̃ is the corresponding boundary scaling dimension, and the angular dependence has
been suppressed for clarity. In two dimensions, the role played byx̃ is emphasized by making
the conformal mappingz→ ln z of the upper half plane to a strip of widthπ : in that geometry
the correlation function decays exponentially along the strip with an inverse correlation length
equal tox̃ [3].

Equation (1) refers to the case when the boundary is smooth (at least on scales� r) and
it is an interesting question to ask whether these results are modified when the boundary is a
fractal on these scales. The example of an edge (or corner in two dimensions) on the boundary
was analysed some time ago [4] and it was shown that new edge scaling dimensions arise which
dependcontinuouslyon the opening angleα. In two dimensions [5] this dependence is given
by conformal invariance arguments by the simple formx(α) = πx̃/α. This suggests that close
to a fractal boundary, which may be thought of as presenting a distribution of opening angles
(which perhaps also depends on the scale at which it is probed), an even more complicated
behaviour should obtain.

In the case of a random fractal, one also expects to see behaviour characteristic
of correlation functions in a quenched random environment. That is, they may exhibit
multiscaling, which means that the average of theirnth power does not scale in the same
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way as thenth power of their average. In this letter, we consider two cases where this problem
is exactly solvable using conformal invariance methods in two dimensions, namely when the
fractal boundary is a self-avoiding walk, and when it is the frontier (exterior boundary) of
a Brownian (ordinary) random walk. In fact, both cases turn out to give identical results.
Our methods are a simple generalization of arguments due to Lawler and Werner [6], who
have derived exact relations between multifractal exponents corresponding to self-intersection
properties of Brownian walks in two dimensions. This corresponds to the special case when
φ is a free scalar field satisfying Laplace’s equation. This physically interesting example, and
its relation to the exponents of star polymers, was in fact discussed some time ago in(4− ε)
dimensions by Cates and Witten [7]. The results of Lawler and Werner have recently been
given an elegant interpretation and derivation by Duplantier [8] in the context of coupling the
system to a randomly fluctuating metric, and our results are formally identical to his, even
though they apply to a wider class of problems when the bulk theory has non-zero central
charge.

Consider for definiteness self-avoiding walks,γ , which are constrained to pass through
the originO. In order to be able to apply conformal invariance arguments, we work in the
fixed fugacity ensemble, in which each walk of lengthL is counted with a weightyL, at the
critical point wherey−1 = µ, the lattice-dependent connective constant. The properties of the
measure on walks on distance scales much larger than the lattice spacing are then supposed
to be conformally invariant. Denote the radial coordinate byρ. We want to focus on those
walks which have a typical linear sizeR, and for which the originO is a typical interior
point. Without loss of generality for computing scaling dimensions, we may then restrict the
walksγ to have the form of a pair of mutually avoiding self-avoiding walks, starting fromO

and ending on the circleρ = R. In the same spirit we may take these points to be the first
intersections of the walks with this circle. The region bounded byγ and an arc of the circle
ρ = R is thus simply connected. In this region we consider a critical system (for example, an
Ising model) with a suitable conformally invariant boundary condition [2] onγ and onρ = R
(for example, that the spins are free). Consider the correlation function〈φ(r)φ(R′)〉, where,
without loss of generality for computing scaling dimensions [7] we can choose|R′| ∼ R, and
we are interested in the limit wherer � R. The geometry is illustrated in figure 1.

Obviously this correlation function depends onγ , but we may hope to be able to compute
suitable averages of this quantity over realizations ofγ . By analogy with the case of a smooth
boundary, we expect that

〈φ(r)φ(R′)〉n ∼ |r|−nx |R|−nx |R/r|−λn (2)

where the overline means an average over all the allowed realizations ofγ . Note that if the
average were over smooth boundaries only, we would expectλn = nx̃, with only the prefactor
modified by the averaging.

We now make a conformal transformation which maps the fractal boundary into a smooth
one. It is convenient to exclude the discρ < r. This leaves the simply connected region
bounded by two segments ofγ and arcs of the circlesρ = r andρ = R. By the Riemann
theorem, the interior of this region may be mapped conformally by an analytic function
z → f (γ, |r|, R; z) onto the interior of a strip of widthπ , but with a length which is not
simply ` ∼ ln(R/r), but which will also depend onγ . Let us denote this bỳeff(γ, `). The
correlation function〈φ(r)φ(R′)〉 will be related by this conformal mapping to one between
operators located near the ends of this strip. Taking thenth power and averaging we see by
comparison with (2) that

e−λn` ∼ e−nx̃`eff (γ,`). (3)
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Figure 1. Geometry in which the simply connected regionR1OR2 is bounded by a self-avoiding
walkγ and an arc of the circleρ = R. This region contains a critical system of which the correlation
function of local operators at pointsr andR′ is of interest. This region, excluding the discρ < |r|,
is conformally mapped into a long strip of widthπ and length̀ eff (γ, r/R).

At this point, we need further information about the averages of the quantities of the form
e−p`eff , for arbitraryp. In particular, let us consider the case wheren = 1, andφ(r) is the
M-leg operator forM mutually self-avoiding walks. It is convenient to generalize slightly and
takeφ(R′) to be a product of distinct single-leg operators corresponding to the walks all ending
on the arc of the circleρ = R. The correlation function then gives the number of such walks
which all begin atr and end at a distance∼R, and, in the critical fugacity ensemble, scales in
the bulk like|r − R|−xM−Mx1, and near a smooth boundary according to (1) with a boundary
scaling dimensioñxM . Coulomb gas arguments [9] lead to the conjecturesxM = 3

16M
2 − 1

12

and x̃M = 1
8M(3M + 2), which have been confirmed by numerical work and various other

known exact information. If we now imagine taking anM-leg star polymer near the fractal
boundaryγ , which itself is a 2-leg star polymer, and performing the same average over the
realizations ofγ , the result will be an(M + 2)-leg star polymer in the bulk. We conclude that

e−(xM+2−x2)` ∼ e−x̃M`eff (γ,`) (4)

where the factor ex2` arises from the normalization of the probability distribution ofγ . Note
that although this is initially defined only forM a non-negative integer, it may be continued to
other real values for which the average exists. Comparing with (3) we may therefore chooseM

such that̃xM = nx̃, solve forM using the exact conjecture forx̃M given above, and substitute
this into the exact form forxM+2. After some simple algebra, this gives the result forλn quoted
in the abstract.

As an example of an application of this result, consider the temperature dependence of
the boundary magnetization,Ms , of an Ising model below its bulk critical temperature. In the
case of a smooth boundary, this vanishes as(−t)β1 ast ≡ (T − Tc)/Tc → 0, where scaling
arguments relateβ1 to the boundary scaling dimensionx̃ = 1

2 of the magnetization operator
by β = νx̃ = 1

2. At a random fractal boundary of the type considered,Ms should exhibit
multiscaling, with the average of itsnth power vanishing as(−t)νλn , whereλn is given by the
above formula with̃x = 1

2. In particular, the average boundary magnetization should behave

like (−t)(1+5
√

13)/24 ≈ (−t)0.79.
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A similar argument may be made whenγ is the exterior boundary of a Brownian
walk. In this case the measure is rigorously known to be conformally invariant. As in the
example considered by Lawler and Werner [6], one may now invoke the exact conjectures
made by Duplantier and Kwon [10] for the relevant dimensions ofM mutually avoiding
ordinary random walks. However, the final result is identical, indicating that there is a strong
element of universality between these two fractals [8], not only with respect to their fractal
dimensions [11].

The nontrivial dependence ofλn shows that correlation functions near the boundary have
a broad distribution of values. In particular, their average value, which scales as(r/R)λ1, may
be quite different from a typical value. As argued, for example, in [12], thetypicaldependence
should be of the form(r/R)λ

′
, whereλ′ = dλn/dn|n=0 = 3x̃. Interestingly enough, this is the

behaviour which would obtain in a wedge of interior angleα = π/3. This idea may be made
more explicit by interpreting (3) in terms of an average over a scale-dependent distribution
P(α, `) of interior opening angles:∫ 2π

0
dα P (α, `)e−(π/α)nx̃` ∼ e−λn`. (5)

Requiring that this be valid for all positive realn determines the form ofP . First, we see that
the behaviour ofλn ∼ nx̃/2 asn→∞ at fixed` implies that the effective angle in this regime
is α ∼ 2π . This is in agreement with the general argument of Cates and Witten [7]. If we set
ω ≡ π

α
− 1

2 andu ≡ nx̃, and defineP̃ (ω, `)dω = P(α, `)dα the above equation simplifies to∫ ∞
0

dω P̃ (ω, `)e−ωu` ∼ exp
(
−(5`/24)

(√
1 + 24u− 1

))
. (6)

Making the ansatzP(ω, `) ∼ e5`/24e−`(aω+b/ω) and using steepest descent then leads to the
solution

P̃ (ω, `) ∼ exp

(
− `

24

(√
ω − 5

2
√
ω

)2
)

(7)

valid for largè (i.e.r/R � 1) and where we have suppressed more slowly varying prefactors.
Note that this result is independent ofx̃, consistent with it being an intrinsic property of the
fractal†. It shows that the effective opening angle has a broad distribution which, however,
becomes more and more strongly peaked around the typical valueω = 5

2 (α = π
3 ) asr/R→ 0,

with a width of order(ln(R/r))−1/2.
A similar calculation may be carried out when the pointO is the root of anN -leg star

polymer, by replacingxM+2−x2 in (4) byxM+N−xN . The caseN = 1 gives the end multifractal
exponents, which, as first pointed out by Cates and Witten, are different form those which arise
whenO is a typical interior point.

In the case considered by Cates and Witten [7], whereφ is a massless scalar field (with
bulk scaling dimensionx = 0) satisfying Dirichlet conditionsφ = 0 on the boundary, the
appropriate boundary scaling operator is∂⊥φ with dimensionx̃ = 1. In that case we find
thatλ(1) = 2

3 = 2− D, whereD = 4
3 is the fractal dimension of the boundary. This is a

consequence of the fact thatφ satisfies Laplace’s equation, equivalent to the conservation of
particle flux in the Brownian interpretation [7]. Note that we were led to this unique result from
making simple assumptions (rigorously grounded in the Brownian case) about the conformal
invariance of the measure onγ . This suggests that all such curves which, with probability one,

† However, it should be noted that the method of averaging used here, which sums over all realizations ofγ passing
through a given pointO at given distancer from a fixed point, tends to emphasize those parts of the fractal for which
the opening angle is small.
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bound a simply connected region when viewed on macroscopic distance scales will fall into
this universality class and, in particular, will haveD = 4

3.
One of the most interesting features of this genre of results [6,8] is that theλn are generally,

even for integern, irrational (but algebraic) numbers. This is not in disagreement with any
established results, since even if the bulk critical theory is unitary, there is no reflection
positivity in the presence of a fractal boundary and so the theorem of Friedanet al [13] is
evaded. However, most examples of exactly calculable critical exponents in two dimensions
have, even in nonunitary cases, led to rational values. Recently Duplantier [8] has given an
interesting interpretation of these type of results in the case of a general mixture of Brownian
and self-avoiding walks, by considering the effects of coupling the system to a fluctuating
background metric (quantum gravity). He was able to argue that, just as the scaling dimensions
of overlapping objects in flat space should be added to obtain that of the composite, when they
are coupled to quantum gravity their dressed scaling dimensions are additive if theyavoid
each other. In this way, by going back and forth between flat space and quantum gravity,
and using the relation between ordinary and dressed scaling dimensions first obtained by
Knizhnik, Polyakov and Zamolodchikov (KPZ) [14], specialized to the casec = 0 appropriate
to Brownian walks, he was able to not only recover the results of Lawler and Werner [6], but
to also derive the earlier conjecture of Duplantier and Kwon [10]. Thus, for this example, his
methods are more powerful than the simple arguments we have used above, since we found
it necessary to invoke the conjectured values for theM-leg scaling dimensions. Since our
main result is a simple generalization to the case whenx̃ 6= 1, one would expect that similar
quantum gravity methods might apply. However, our result is supposed to be valid for a bulk
theory with arbitrary central chargec, and it is therefore not clear why the KPZ relation with
c = 0 should appear in this more general case.

We have given an exact formula for the multiscaling boundary exponents of an arbitrary
conformally invariant two-dimensional critical system close to a random fractal boundary. This
is the first example when such a multifractal spectrum with a nontrivial analytic structure has
been found exactly for a general critical system, although the form of the result is identical with
that found for arbitrary combinations of Brownian and self-avoiding walks (withc = 0) by
Duplantier [8]. The basic method was to realize that this kind of geometric quenched disorder
may be gauged away by making a suitable conformal transformation, at the cost of modifying
the moduli (in this casè = ln(R/r)). The effective distribution of̀ eff is then probed by
replacing the critical system by one withc = 0 (in our case, self-avoiding walks) for which
the partition function is unity and therefore the quenched average of a correlation function is
the same as its annealed average, which is more simply dealt with.

Similar ideas may be applied to a critical system coupled tobulk quenched disorder in the
form of a random metric (which may be realized as the continuum limit of a randomly connected
lattice). In this case we may consider an annulus of inner and outer radiir andR respectively,
which in the case of a flat metric may be mapped conformally by the transformationz→ ln z
to a flat metric on a cylinder of perimeter 2π and length̀ = ln(R/r). The inverse correlation
length along this cylinder is then equal to the bulk scaling dimensionx [3]. An arbitrary metric
g on the annulus is also conformally equivalent to the cylinder with a flat metric but with a
length`eff(g, `). In analogy with (3) the multifractal bulk exponentsλbn, which govern the
decay of the quenched average of thenth power of the bulk correlation function, are given by

e−λ
b
n` ∼ e−nx`eff (g,`). (8)

We now consider the special case when the critical system case hasc = 0. In that case the
quenched and annealed averages are identical, and the respective scaling dimensionsX0 and
X of an operator in flat space and when coupled to a fluctuating metric are related by thec = 0
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version of the KPZ relation [14]X0 = 1
3X(1 +X). Thus, if we now setX0 = nx and solve

for X, this will yield λbn. The result is

λbn =
1

2

(√
1 + 12nx − 1

)
. (9)

This result for the scaling dimensions when coupled to a quenched random lattice, was derived
for the casen = 1 by Baillie et al [15], but in fact these correlation functions exhibit
multiscaling, with a whole spectrum of such exponents. Note that in this case the typical
decay of a correlation function is determined by(λb)′ = 3x.

The author thanks G Lawler and B Duplantier for explaining some of their ideas, and the
Fields Institute, Toronto, where this work was started, for its hospitality. This research was
partly supported by the Engineering and Physical Sciences Research Council under Grant
GR/J78327.

Note added in proof. After the first draft of this work was completed preprints by Duplantier [16] and Aizenman
et al [17] appeared in which, among other things, it was argued that the fractal dimension of the accessible perimeter
of a percolation cluster has fractal dimensionD = 4

3 , consistent with the general arguments advanced above.
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